Master of Computer Application Online Learning (MCA-OL)

PROGRAMME PROJECT REPORT (PPR)

Chhatrapati Shahu Ji Maharaj University (CSJMU) UP State University | Formerly Kanpur University Accredited 'A++' by NAAC | UGC Approved Category 1 University Kanpur (UP)

About the Programme

The Master of Computer Application (MCA) – Online Learning (OL) programme offered by Chhatrapati Shahu Ji Maharaj University, Kanpur allowing students to study remotely without the need to attend traditional in-person classes. These programs are often designed to accommodate the needs of working professionals or individuals who are unable to commit to a full-time, on-campus program due to various reasons such as job commitments, family responsibilities, or geographical constraints. CSJM University, a Category-1 and accredited as 'A++' by NAAC, university is offering those students a best and easy path to develop their skills. The university has experienced faculty members, an excellent library, and other modern facilities to provide a proper learning environment for the students. This programme is very well received by industry. This is a 02 Year (04-Semester) programme. This programme is designed in such a way to equip students with a holistic set of skills and competencies essential for success in the field of information technology and focuses on imparting to students the ability to demonstrate leadership, understand human relationships, and problem-solving abilities essential for success in IT/ Corporate world.

Vision of the University

To enlighten and empower humanity by nurturing future leaders and change agents for universal development and societal transformation.

Mission of the University

To work towards sustainable excellence in global standards of academia, technology-centric learning, robust research ecosystem, institutional distinctiveness, and harmonious social diversity.

I. Mission and Objective of Master of Computer Application (MCA) Programme:

The mission and objectives of MCA-OL Programme would be tailored to cater to a diverse range of learners who seek accessible, flexible, and high-quality education in computer application. Here's a proposed framework for the mission and objectives:

1. Mission:

To provide a comprehensive and innovative MCA Programme aims to prepare students for success in the information technology industries all over world by equipping them with relevant knowledge, skills, and competencies. The mission is to foster not only academic growth but also personal and professional development. This may include opportunities for internships, industry partnerships, and career services support.

2. Objectives:

- *Accessibility:* To offer high-quality education in computer applications to individuals who face obstacles attending traditional on-campus programs due to geographical constraints, work commitments, or personal circumstances.
- *Flexibility:* To offer flexible scheduling options that accommodate the diverse needs of distance learners, allowing them to balance their studies with work, family, and other responsibilities.
- *Engagement:* To foster active engagement and collaboration among students, instructors, and course content through the effective use of online learning technologies, discussion forums, virtual classrooms, and interactive multimedia resources.
- *Skill Development:* This programme aims to enhance students' analytical, critical thinking, problem-solving, communication, and teamwork skills, ensuring they are well-equipped to excel in the dynamic field of computer applications.
- *Technological Proficiency:* To equip students with advanced skills in utilizing digital tools and technologies essential for various business and industry applications. This

includes proficiency in utilizing online learning platforms, mastering data analysis software, and effectively leveraging communication tools to thrive in the rapidly evolving landscape of information technology operations.

- *Global Perspective:* To expose MCA students to a diverse range of global perspectives in the field of computer applications, including exploring emerging technologies, international IT markets, and cultural nuances. This includes understanding the impact of globalization on technology-driven businesses, adapting to cross cultural communication and collaboration, and navigating the complexities of global IT ecosystems.
- *Carrier Readiness:* To equip MCA students with the necessary skills and knowledge for entry-level positions in diverse fields of the IT industry or to pursue further education at the graduate level. This is achieved through the provision of comprehensive career development resources, opportunities for internships, and avenues for networking with industry professionals.
- *Continuous Improvement:* To continuously evaluate and improve the program based on feedback from students, instructors, employers, and industry trends, ensuring that it remains relevant and effective in meeting the needs of learners and the demands of the business and industry environment.

Program Outcomes:

- **1. PO1: Computational Knowledge:** Demonstrate competencies in fundamentals of computing, computing specialization, mathematics, and domain knowledge suitable for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
- 2. PO2: Problem Analysis (PA): Identify, formulate, and analyze complex real-life problems in order to arrive at computationally viable conclusions using fundamentals of mathematics, computer sciences, management and relevant domain disciplines.
- **3. PO3: Design / Development of Solutions (DDS):** Design efficient solutions for complex, real-world problems to design systems, components or processes that meet the specifications with suitable consideration to public health, safety, cultural, societal, and environmental considerations.
- 4. PO4: Conduct Investigations of Complex Computing Problems (CICP): Ability to research, analyze and investigate complex computing problems through design of experiments, analysis and interpretation of data and synthesis of the information to arrive at valid conclusions.
- **5. PO5: Modern Tool Usage (MTU):** Create, select, adapt, and apply appropriate technologies and tools to a wide range of computational activities while understanding their limitations.
- 6. PO6: Professional Ethics (PE): Ability to perform professional practices in an ethical way, keeping in mind cyber regulations & laws, responsibilities, and norms of professional computing practices.
- 7. PO7: Life-long Learning (LLL): Ability to engage in independent learning for continuous self- development as a computing professional.
- 8. PO8: Project Management and Finance (PMF): Ability to apply knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- **9. PO9: Communication Efficacy (CE):** Ability to effectively communicate with the technical community and with the society at large about complex computing activities by being able to understand and write effective reports, design documentation, make effective presentations with the capability of giving and taking clear instructions.

- **10. PO10: Societal and Environmental Concern (SEC):** Ability to recognize and assess societal, environmental, health, safety, legal and cultural issues within local and global contexts and the consequential responsibilities applicable to professional computing practices.
- **11. PO11: Individual and Teamwork (I&T):** Ability to work in multi-disciplinary team collaboration both as a member and leader, as per need.
- **12. PO12: Innovation and Entrepreneurship (I&E):** Ability to apply innovation to track a suitable opportunity to create value and wealth for the betterment of the individual and society at large.

II. Relevance of MCA Programme in Chhatrapati Shahu Ji Maharaj University Kanpur's Mission and Objectives:

Master of Computer Application (MCA) program with the mission and objectives of Chhatrapati Shahu Ji Maharaj University, Kanpur, it's essential to consider how the program contributes to the university's overarching goals and values. Here's how the relevance of an MCA program could be articulated in relation to the mission and objectives of the university:

- 1. *Promoting Access to Education:* The MCA programme plays a crucial role in promoting access to quality education by offering flexible learning options, including distance and online education. This ensures that individuals from diverse backgrounds and locations, aspiring to pursue a career in the field of computer applications, can access high-quality education regardless of their geographical constraints or personal circumstances.
- 2. Preparing Students for Carriers and Leadership: The MCA programme is dedicated to preparing students for successful careers and leadership roles in the dynamic field of information technology. Through a well-rounded curriculum and a range of practical experiences, students are equipped with essential knowledge, skills, and competencies to excel in various sectors of the IT industry.
- **3.** *Emphasizing Research:* The MCA programme prioritizes research, fostering critical thinking and intellectual curiosity among students and faculty. By engaging in research projects, students contribute to the advancement of knowledge in computer science and information technology, preparing them to be innovative problem solvers in the industry.

MCA program with the mission and objectives of Chhatrapati Shahu Ji Maharaj University, Kanpur, it not only enhances the relevance and effectiveness of the program but also strengthens the overall impact of the university in serving its stakeholders and society at large.

III. Nature of prospective target group of learners:

The prospective target group of learners for Master of Computer Application (MCA) program can vary depending on factors such as the program's focus, delivery mode, and institutional context. However, there are several common characteristics and attributes that are often associated with the typical demographic profile of MCA students:

- 1. *University Graduates:* The MCA programme appeals to students who have recently completed their graduation and are eager to pursue postgraduate studies in the field of computer application. These students typically possess a solid academic foundation and are driven by the desire to acquire a degree that will equip them with the necessary skills and knowledge to embark on a successful career in the IT industry or related fields.
- 2. *Carrier Advancers:* Prospective MCA students aim for careers in IT and computer science, including roles like software developer, systems analyst, or IT consultant. Some aspire to start tech start-ups, lead in top companies, or specialize in areas like cybersecurity or data science.
- 3. Motivated and Ambitious: MCA students are often characterized by their ambition,

motivation, and drive to succeed. They are willing to put in the effort required to excel academically and take advantage of opportunities for professional development and networking.

- **4.** *Diverse Backgrounds:* MCA programs often attract students from diverse cultural, ethnic, and socioeconomic backgrounds. This diversity enriches the learning environment and provides students with opportunities to interact with peers from different perspectives and experiences.
- **5.** *Entrepreneurial Spirit:* Some prospective MCA students may have an entrepreneurial spirit and aspirations to start their own businesses or ventures. They are interested in learning about business concepts, strategies, and practices that will help them succeed as entrepreneurs.
- 6. *Economically Diverse Students:* The program appeals to students from diverse socioeconomic backgrounds who seek affordable and accessible educational opportunities. These learners may appreciate programs that have flexible payment options to make education more accessible.
- **7.** *Skill Up-graders:* Some prospective students may enroll in MCA-OL program to upgrade their skills or transition to new career paths within IT fields. They may be looking to acquire advanced IT skills that are in demand in today's job market.
- 8. *Specialized Learners:* This program attracts students with specific interests or career goals within the IT field. These learners may seek programs that offer specialized tracks, concentrations, or elective courses tailored to their areas of interest.

IV. Appropriateness of program to be conducted in Online Learning mode to acquire specific skills and competence:

Conducting a Master of Computer Application (MCA) program in Online Learning (OL) mode can be highly appropriate for acquiring specific skills and competencies, particularly for learners who require flexibility, accessibility, and personalized learning experiences. Here's why the OL mode can be beneficial for acquiring skills and competence in MCA program:

- 1. *Flexibility:* OL programs offer learners the flexibility to study at their own pace and convenience. This flexibility is particularly valuable for individuals who may have work commitments, family responsibilities, or other constraints that make attending traditional on-campus classes challenging. As a result, learners can balance their studies with other commitments, allowing them to acquire skills and competence in MCA program without disrupting their personal or professional lives.
- 2. Accessibility: OL programs make education more accessible to a broader range of learners, including those who are geographically isolated or unable to attend traditional on-campus classes due to mobility issues or other barriers. By removing geographical constraints, OL programs enable learners from diverse backgrounds and locations to participate in MCA program and acquire the skills and competence needed for success in the business world.
- **3.** *Personalized Learning:* OL programs often utilize technology-enabled learning platforms that allow for personalized learning experiences. Learners can access a variety of resources, including multimedia content, online lectures, discussion forums, and interactive simulations, tailored to their individual learning styles and preferences. This personalized approach can enhance engagement, comprehension, and retention of key concepts and skills in the MCA program.
- **4.** *Technology Integration:* MCA programs conducted in OL mode leverage technology to facilitate learning, collaboration, and communication among learners and instructors. Through online platforms, learners can engage in virtual classrooms, participate in group discussions, submit assignments, and receive feedback from instructors in real-time. This integration of technology not only enhances the learning experience but also prepares learners

for the digital workplace, where technology skills are increasingly essential.

- **5.** *Self-Directed Learning Skills:* OL programs promote the development of self-directed learning skills, including time management, organization, and self-motivation. Learners in MCA program conducted in OL mode take greater responsibility for their learning journey, setting goals, managing their study schedules, and seeking out resources to enhance their skills and competence. These self-directed learning skills are highly valuable in the dynamic and rapidly changing business environment.
- 6. *Cost Effectiveness:* OL programs often offer cost-effective alternatives to traditional oncampus education, as they eliminate the need for expenses such as commuting, accommodation, and campus facilities. This affordability makes acquiring skills and competence in MCA program more accessible to learners from diverse socioeconomic backgrounds, thereby promoting inclusivity and equity in education.

Overall, conducting MCA program in Online Learning mode can be highly appropriate for acquiring specific skills and competencies, offering flexibility, accessibility, personalized learning experiences, technology integration, self-directed learning skills, and cost-effectiveness. These advantages make OL programs an attractive option for learners seeking to acquire business knowledge and skills while balancing their personal and professional commitments.

V. Instructional Design of Online Learning mode to acquire specific skills and competence:

Designing the instructional framework for an Online Learning (OL) mode of Master of Computer Application (MCA) to acquire specific skills and competence requires careful consideration of various factors to ensure effectiveness, engagement, and learner success. Here's a structured approach to instructional design for such program:

A. Curriculum Design:

The curriculum of the MCA programme is meticulously designed with inputs from industry experts, Bloom's taxonomy, and faculty knowledge to offer students a comprehensive and contemporary education in computer applications. By integrating the latest industry insights and trends, the curriculum ensures students are well-prepared for the dynamic demands of the modern IT landscape. Employing Bloom's Taxonomy, the curriculum focuses on developing higher order thinking skills such as critical analysis, problem-solving, and evaluation, enabling students to tackle complex challenges with confidence. The expertise of faculty members enriches the curriculum, providing students with practical wisdom and industry insights. Through interactive lectures, hands-on projects, and engaging discussions, faculty members equip students with the tools needed to excel in their future careers. With a strong emphasis on practical learning and real-world applications, the MCA curriculum ensures students acquire the skills essential for success in today's competitive IT environment, bridging the gap between theory and practice to empower students to make meaningful contributions to the ever-evolving world of technology.

Semester-wise Titles of the Papers in MCA

MCA 1st Year (Semester I)

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
1 st	Ι	MCA-1001	Fundamental of Computers & Emerging Technologies	Theory	4
1^{st}	Ι	MCA-1002	Problem Solving using C	Theory	4
1 st	Ι	MCA-1003	Principles of Management & Communication	Theory	4
1 st	Ι	MCA-1004	Discrete Mathematics	Theory	4
1^{st}	Ι	MCA-1005	Computer Organization & Architecture	Theory	4
1^{st}	Ι	MCA-1051	Principles of Programming Using C Lab	Practical	3
1 st	Ι	MCA-1052	Professional Communication Lab	Practical	2

MCA 1st Year (Semester II)

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
1^{st}	II	MCA-2001	Theory of Automata & Formal Languages	Theory	4
1^{st}	II	MCA-2002	Object Oriented Programming	Theory	4
1^{st}	II	MCA-2003	Operating Systems	Theory	4
1 st	II	MCA-2004	Database Management Systems	Theory	4
1 st	II	MCA-2005	Data Structures & Analysis of Algorithms	Theory	4
1 st	II	MCA-2051	DBMS Lab	Practical	3
1 st	II	MCA-2052	Object oriented and data structure lab	Practical	3

MCA 2nd Year (Semester III)

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
2^{nd}	III	MCA-3001	Computer Network	Theory	4
2 nd	III	MCA-3002	Artificial Intelligence	Theory	4
2 nd	III	MCA-3003	Software Engineering	Theory	4
2 nd	III		Elective – 1	Theory	4
2 nd	III		Elective – 2	Theory	4
2 nd	III	MCA-3051	Software Engineering Lab	Practical	3
2 nd	III	MCA-3052	Mini Project(AI / ISCL)	Practical	4

MCA 2nd Year (4th Semester)

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
2 nd	IV		Elective – 3	Theory	4
2 nd	IV		Elective – 4	Theory	4
2 nd	IV		Elective – 5	Theory	4
2 nd	IV	MCA-4061	Major Project	Practical	15

	ELECTIVE SUBJECTS						
Elective-1	MCA-3004	Data Warehousing & Data Mining					
Elective-1	MCA-3005	Cloud Computing					
Elective-2	MCA-3006	Big Data					
Elective-2	MCA-3007	Digital Image Processing					
Elective-3	MCA-4001	Soft Computing					
	MCA-4002	Software Quality Engineering					
Elective-4	MCA-4003	Neural Network					
Elecuve-4	MCA-4004	Internet of Things					
Elective-5	MCA-4005	Machine Learning					
Elective-5	MCA-4006	Quantum Computing					

B. Detailed Syllabus: Annexure – I

C. Duration of the Programme: 02 Years - divided into 04 semesters.

D. Faculty and Support Staff requirement:

Academic Staff

1-Programme Coordinator, 1- Course Coordinator, 1-Course Mentor per batch of 50 students

E. Instructional Delivery mechanisms & Identification of Media:

The methodology of instruction in this course will be different from that of the other conventional (regular/ physical) courses run in the University. A student-centric and student-convenient approach is required in the online learning (OL) courses. This is also important because learning/ instruction is imparted through print and/ or audio-visual media rather than face-to-face communication.

F. Self-Learning Materials (SLM) should be developed in print media:

- Self-Learning Materials (SLM), in print media, shall be developed.
- SLM would be self-explanatory, self-contained, self-directed, self-motivating and self-evaluating.
- There shall be a description of the credit value of each module or unit in the course.
- There shall be clear guidelines on academic integrity and netiquette (internet etiquette) expectations regarding activities, discussions, and plagiarism.
- The audio-visual material will supplement and complement the Self Learning Materials and will be based on the curriculum structure.
- The level and style of presentation and language should be simple and appropriate to facilitate e-learning.
- The content must be interactive with the appropriate use of graphics, animation simulations, etc. to keep students interested.

G. Student support service systems:

The main goal of student support service systems is to promote independent study. Study among distance learners in the absence of regular face-to-face teaching. All the time educational support will be provided to students. Support will be available all the time in the following areas:

- Information, tips and advice about the programme.
- Advice before admission, during admission, and after admission.
- Introduction for new students.
- Provide academic advising schedules and practice schedules.
- Evaluate students and exchange feedback.
- Support with other academic and administrative inquiries such as registration and examination Rating, comments, etc.

VI. Procedure for Admissions, Curriculum Transaction and Evaluation:

The purpose of online education is to provide flexible learning opportunities to students to attain qualification, wherever learners are not able to attend the regular classroom teaching. The programme is called online mode for the award of Degree.

A. Procedure for Admission

Relevant undergraduate program from a recognized University. Candidate must have passed Mathematics at 10+2 level and/ or graduation level.

B. Curriculum Transaction and Evaluation

The marking is divided into two parts:

- a. For continuous internal assessment (CIA) through projects and assignment writings, and
- *b*. For end semester evaluation through offline examination.

VII. Library Resources:

Online Study Material and its availability is one most identified concern for the students to have access to online course material and resources.

VIII. Cost estimate of the program and the provisions:

Suggested Fee for MCA-OL is as per the CSJM University norms (This fee includes Self Learning Material cost, Learning Management System maintenance cost and Subject Matter Expert cost).

IX. Quality Assurance Mechanism and Programme Learning Outcomes:

A. Quality Assurance Mechanism:

MCA-OL program is agreed to the latest pedagogies and prepares you for many contours your professional life might take.

The key points which make our offered programme much better in terms evaluation criteria:

- The programme is being offered by NAAC A++ ranked Chhatrapati Shahu Ji Maharaj University, Kanpur.
- Highly qualified faculty who bring professional experience into the classroom.
- Relevant courses are immediately applicable to the workplace.
- Dedicated student support services.
- Flexible ways to learn.

B. Program Learning Outcomes:

- 1. To be able to understand problems, think of the best suitable approach to solve the problem, develop, and evaluate effective solutions as per the local/regional/ national/ global requirements and availability of resources/ technologies.
- 2. To be able excel in contemporary technologies being adopted by the industry and academia for providing sustainable solutions.
- 3. To be able to excel in various programming/project competitions and technological challenges laid by professional bodies.

MCA Semester I, Paper-I (04 Credits) Core Course: MCA-1001 FUNDAMENTAL OF COMPUTERS & EMERGING TECHNOLOGIES								
Core Cou Credit: 4	rse: MCA-1001 FUNDAMENTAL OI CIA: 25	ESE: 75	S & EMERGING TECHNOLOGIES Max. Marks: 100					
	This course aims to provide a comprehensive understanding of computer fundamentals, covering essential concepts such as hardware, software, operating systems, and basic programming principles. Students will							
			shooting common issues, and utilizing					
			will possess the foundational knowledge					
			nance digital literacy skills, and lay the					
groundwor	k for further studies or professional ende	avors in comput	ting.					
	Unit 1: Introduction to Computer: De	finition, Comp	uter Hardware & Computer					
	Software		-					
	Unit 2: Components: Hardware – Intr	oduction, Inpu	t devices, Output devices,					
	Central Processing Unit, Memory-Pri	mary and Seco	ndary, Software Introduction,					
Block I	Types – System and Application.							
	Unit 3: Computer Languages: Introdu	ction, Concept	of Compiler, Interpreter &					
		Assembler						
	Unit 4: Problem solving concept: Algorithms – Introduction, Definition, Characteristics, Limitations, Conditions in pseudo-code, Loops in pseudo code.							
	Unit 1: Operating system: Definition, Unit 2: Elements of command based,							
Block II	Unit 2: Elements of command based, Unit 3: Computer Network: Overview							
	Unit 4: Data communication topologi	• •	, wan alu wan),					
	Unit 1: Architecture, Functioning, Ba							
	Unit 2: FTP, Telnet, Gopher etc. Sear							
Block III	Unit 3: Internet of Things(IoT): Defin							
	Unit 4: Smart Cities, Industrial Intern		51					
	Unit 1: Introduction, overview, featur	-						
	Unit 2: Application areas, fundamenta		nain					
Block IV	Unit 3: Introduction, Applications and							
	Unit 4: IT nature and benefits, AWS,	Google, Micro	osoft & IBM Services,					
	Unit 1: Emerging Technologies: Intro		iew, features, limitations					
DL -L V	Unit 2: Application areas of Augmen	•						
Block V	Unit 3: Virtual Reality, Grid computi							
	Unit 4: Big data analytics, Quantum	Computing and	Brain Computer Interface.					

- 1. Rajaraman V., "Fundamentals of Computers", Prentice-Hall of India
- 2. Norton P., "Introduction to Computers", Mc Graw Hill Education.
- 3. Goel A., "Computer Fundamentals", Pearson.
- Balagurusamy E., "Fundamentals of Computers", Mc Graw Hill
 Thareja R., "Fundamentals of Computers", Oxford University Press

	MCA Semester						
Creadity 4	Core Course: MCA-1002 P						
exercises concepts. problems,	CIA: 25 e aims to cultivate problem-solving skill and projects, students will learn algorithm By mastering fundamental programming devise efficient solutions, and implement ow, debugging strategies, and optimizing	ic thinking, data techniques, stuc them using C. E	structures, and procedural progra lents will develop the ability to	amming analyze			
Block I	Unit 1: Basics of programming: Approa programming Unit 2: Concept of algorithm and flowch programming. Unit 3: Basics of C: History of C, Salien Compiling C Program, Link and Run C I Unit 4: Character set, Tokens, Keyword Data types, Standard Input/Output, Oper	nart, Concept, an t features of C, S Program, s, Identifiers, Co	d role of structured Structure of C Program, Instants, Variables, Instructions,				
Block II	 Unit 1: Conditional Program Execution: if, if-else, and nested if-else statements, Switch statements, Unit 2: Restrictions on switch values, Use of break and default with switch, Comparison of switch and if-else. Unit 3: Loops and Iteration: for, while and do-while loops, Multiple loop variables, Nested loops, Assignment operators, break and continue statement. Unit 4: Functions: Introduction, Types, Declaration of a Function, Function calls, Defining functions, Function Prototypes, Passing arguments to a function Return values and their types, Writing multifunction program, Calling function by value, Recursive functions. 						
Block III	Unit 1: Arrays: Array notation and repret Initializing arrays, Accessing array eleme Unit 2: Pointers: Introduction, Character declaration and assignment, Pointer arith Unit 3: Call by reference, Passing pointer functions, Pointer to pointer, Array of po Unit 4: Strings: Introduction, Initializin strings, Passing strings to functions, String	ents, Manipulatin istics, * and & o metic, ers to functions, a pinters. g strings, Access	ng array elements, perators, Pointer type urray of pointers, Pointers to				
Block IV	Unit 1: Structure: Introduction, Initialia Accessing members, Operations on indiv Unit 2: Structure within structure, Array Unit 3: Union: Introduction, Declaring u Enumerated data types Unit4: Storage classes: Introduction, Typ	vidual members, of structure, Poi mion, Usage of u	Operations on structure nters to structure. nions, Operations on union.				
Block V	Unit 1: Dynamic Memory Allocation: In realloc and free. Unit 2: File Handling: Basics, File types modes, File handling functions, Unit 3: File handling through comman Unit 4: Graphics: Introduction, Constant graphics, Library functions used indrawi within the program.	, File operations, d line argument , Data types and	File pointer, File opening Record I/O in files. global variables used in				

- Kanetkar Y., "*Let Us C*", BPB Publications
 Hanly J. R. and Koffman E. B., "*Problem Solving and Program Design in C*", Pearson Education.
- Schildt H., "*C The Complete Reference*", McGraw-Hill.
 Goyal K. K. and Pandey H. M., "*Trouble Free C*", University Science Press

MCA Semester I, Paper-III (04 Credits)							
				ENT & COMMUNICATION			
Credit:	4	CIA: 25	ESE: 75	Max. Marks: 100			
strategies. and control case studie qualities, a	This course aims to equip students with essential principles of management and effective communication strategies. Students will explore foundational management concepts including planning, organizing, leading, and controlling, alongside the importance of interpersonal communication in organizational settings. Through case studies, simulations, and practical exercises, students will develop critical thinking skills, leadership qualities, and the ability to communicate persuasively and professionally. Unit 1: Management: Need, Scope, Meaning and Definition. The process of Management,						
Block I	Unit 2: Develop	pment of Management orne Studies, Qualities					
Block II	 Unit 1: Planning & Organizing: Need, Scope and Importance of Planning, Steps in planning, Unit 2: Decision making model. Organizing need and Importance, Organizational Design, Unit 3: Organizational structure, centralization and Decentralization, Delegation. 						
Block III	Unit 1: Directing & Controlling: Motivation—Meaning, Importance, need. Theories of Motivation,						
Block IV	 Unit 1: Introduction to Communication: What is Communication, Levels of communication, Barriers to communication, Process of Communication, Non-verbal Communication, Unit 2: The flow of Communication: Downward, Upward, Lateral or Horizontal (Peer group) Communication, Technology Enabled communication, Impact of Technology, Unit 3: Selection of appropriate communication Technology, Importance of Technical communication. 						
Block V	application and Unit 2: Reports Unit 3: Technic Nuances of De Pitch; Rhythm; Unit 4: Paraling	Resumes. :: Types; Structure, Sty cal Proposal: Parts; T livery; Body Languag ; Intonation.	le & Writing of Repo ypes; Writing of Pro ge; Dimensions of S e; Communication sk	oposal; Significance. peech: Syllable; Accent; cills, Presentation strategies,			

- 1. P. C. Tripathi, P. N. Reddy, "Principles of Management", McGraw Hill Education 6th Edition.
- 2. C. B. Gupta, "Management Principles and Practice", Sultan Chand & Sons 3rd edition.
- 3. T. N. Chhabra, "Business Communication", Sun India Publication.
- 4. V. N. Arora and Laxmi Chandra, "Improve Your Writing", Oxford Univ. Press, 2001, New Delhi.
- 5. Madhu Rani and Seema Verma, "*Technical Communication: A Practical Approach*", Acme Learning, New Delhi-2011.
- 6. Meenakshi Raman & Sangeeta Sharma, "*Technical Communication Principles and Practices*", Oxford Univ. Press, 2007, New Delhi.
- 7. Koontz Harold & Weihrich Heinz, "Essentials of Management", McGraw Hill 5th Edition 2008.
- 8. Robbins and Coulter, "*Management*", Prentice Hall of India, 9th edition.
- 9. James A. F., Stoner, "Management", Pearson Education Delhi.

	MCA Semester I, Paper-IV (04 Credits)						
Credit:	Core Course: MCA 1004 DISCRETE MATHEMATICS4CIA: 25ESE: 75Max. Marks: 100						
such as set essential fo	e aims to provide a rigorous foundation in discrete mathematics, focusing on fundamental os, logic, relations, functions, and combinatorics. Students will develop analytical thinking so r computer science and mathematics applications. Topics include mathematical reasoning, graph theory, and discrete probability	skills					
Block I	 Unit 1: Set Theory: Introduction, Size of sets and Cardinals, Venn diagrams, Combination of sets, Multisets, Ordered pairs and Set Identities. Unit 2: Relation: Definition, Operations on relations, Composite relations, Properties of relations, Equality of relations, Partial order relation. Unit 3: Functions: Definition, Classification of functions, Operations on functions, Recursively defined functions. 						
Block II	 Unit 1: Posets, Hasse Diagram and Lattices: Introduction, Partial ordered sets, Combination of Partial ordered sets, Unit 2: Hasse diagram, Introduction of lattices, Properties of lattices – Bounded, Complemented, Modular and Complete lattice. Unit 3: Boolean Algebra: Introduction, Axioms and Theorems of Boolean algebra, Boolean functions. Simplification of Boolean functions, Karnaugh maps, Logic gates. Unit 4: Propositional: Propositions, Truth tables, Tautology, Contradiction, Algebra of Propositions, Theory of Inference and Natural Detection. 						
Block III	Unit 1: Algebraic Structures: Introduction to algebraic Structures and properties. Types of algebraic structures: Semi group, Monoid, Group,						
Block IV	Unit 1: Natural Numbers: Introduction, Piano's axioms, Mathematical Induction, Strong Induction, and Induction with Nonzero Base cases.Unit 2: Recurrence Relation & Generating functions: Introduction and properties of Generating Functions. Simple Recurrence relation with constant coefficients and Linear recurrence relation without constant coefficients.Unit 3: Methods of solving recurrences. Combinatorics: Introduction, Counting techniques and Pigeonhole principle, Polya's						
Block V	Counting theorem.Unit 1: Graph theory: Path, cycles, handshaking theorem, bipartite graphs, sub-graphs, graph isomorphism, operations on graphs, Eulerian graphs, and Hamiltonian graphs, Unit 2: planar graphs, Euler formula, traveling salesman problem, shortest path algorithms						

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw Hill, 2006.
- 2. B. Kolman, R.C Busby and S.C Ross, "*Discrete Mathematics Structures*", Prentice Hall, 2004.
- 3. R. P Grimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley, 2004.
- 4. Y. N. Singh, "Discrete Mathematical Structures", Wiley-India, First edition, 2010.
- 5. Swapan Kumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand & Company PVT. LTD.
- 6. V. Krishnamurthy, "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.
- 7. Lipschutz, Seymour, "Discrete Mathematics", McGraw Hill.

	MCA Semester I, Paper-V (04 Credits)							
	Core Course: M	MCA-1005 COM		IZATION & ARCHITEC	TURE			
Credit: 4 CIA: 25			ESE: 75	Max. Ma	arks: 100			
	This course aims to provide a comprehensive understanding of computer organization and architecture							
				of digital computer system				
				y language programming.				
-		etween hardware a	and software comp	oonents, as well as perform	ance optimization			
techniques		ation: Eunstional y	units of digital sus	am and their interconnectic				
Block I	Block IUnit 1: Introduction: Functional units of digital system and their interconnections, Unit 2: buses, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer.Block IUnit 3: Processor organization: general registers organization, stack organization and addressing modes.							
Block II	Unit 1: Arithmetic and logic unit: Look ahead carries adders. Multiplication: Signed operand multiplication,							
Block III	Unit 1: Control Unit: Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc.), Unit 2: micro-operations, execution of a complete instruction, Program Control.							
Block IV	Unit 1: Memory:Basicconceptandhierarchy,semiconductorRAMmemories,2D Unit 2: memory organization. ROM memories. Cache memories: concept and designs uses & performance.							
Block V	hardware, types Unit 2: Modes of Memory Access Unit 3: Serial O	of interrupts and of Data Transfer: 1 s., I/O channels an	exceptions. Programmed I/O, d processors. Synchronous & as	face, I/O ports, Interrupts: i nterrupt initiated I/O and D synchronous communication	Direct			

- 1. John P. Hayes, "Computer Architecture and Organization", McGraw-Hill.
- 2. William Stallings, "Computer Organization and Architecture-Designing for Performance", Pearson Education.
- 3. M. Morris Mano, "Computer System Architecture", PHI.
- 4. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, "Computer Organization", McGraw-Hill.
- 5. Behrooz Parahami, "Computer Architecture", Oxford University Press.
- 6. David A. Patterson and John L. Hennessy, "*Computer Architecture A Quantitative Approach*", Elsevier Pub.
- 7. Tannenbaum, "Structured Computer Organization", PH

MCA Semester II, Paper-I (04 Credits) Core Course : MCA-2001 THEORY OF AUTOMATA & FORMAL LANGUAGES							
Credit: 4		CIA: 25		ESE: 75		Max. Marks: 100	
languages a processing,	re sets of string	gs defined by rugh, and algorith	ules. This t	heory underp	ins computer	nd Turing machines. science, aiding in la inderstand computat	anguage
Block I	 Unit 1: Introduction to Theory of Computation-Automata, Computability and Complexity, Alphabet, Symbol, String, Formal Languages, Deterministic Unit 2: Finite Automaton(DFA)-Definition, Representation, Acceptability of a String and Language, Non-Deterministic Unit 3: Finite Automaton (NFA), Equivalence of DFA and NFA, NFA with ε-Transition, Equivalence of NFA's with and without ε-Transition, Finite Automata with output-Moore machine, Unit 4: Mealy Machine, Equivalence of Moore and Mealy Machine, Minimization of Finite Automata, Myhill-Nerode Theorem, Simulation of DFA and NFA. 						
Block II	Unit 1: Regular Expressions and Languages: Regular Expressions, Transition Unit 2: Graph, Kleen's Theorem, Finite Automata and Regular Expression-Arden's theorem, Algebraic Method Using Arden's Theorem, Regular and Non-Regular Languages Unit 3: Closure properties of Regular Languages, Pigeonhole Principle, Pumping Lemma, Application of Pumping Lemma, Unit 4: Decidability-Decision properties, Finite Automata and Regular Languages, Regular Languages and Computers, Simulation of Transition Graph and Regular language.						
Block III	Unit 1: Conte Unit 2: Deriv Left Linear g Unit 3: FA, S Greibach Nor	rammars, Conv	d Ambigut version of 1 of CFG, No IF), Chom	ity, Regular (FA into CFG ormal Forms- sky	Grammars-R and Regular Chomsky No	ight Linear and grammar into ormal Form (CNF),	
Block IV	Unit 2: Nonde Language Ac Deterministic Unit 3: Pusho for Pushdowr Unit 4: Pump	Context free L lown Automata n Automata, Tw ping Lemma for	shdown Au DA, Detern Languages a for Conte vo stack Pu r CFL, Clo	tomata (NPD ninistic Push (DCFL), xt Free Lang ushdown Aut sure properti	A)-Definition down Autom guages, Conte comata, es of CFL, D	h, Moves, A lata (DPDA) and ext Free grammars Decision Problems	
Block V uggested Re	Unit 4: Pumping Lemma for CFL, Closure properties of CFL, Decision Problems of CFL, Programming problems based on the properties of CFLs.Unit 1: Turing Machines and Recursive Function Theory: Basic Turing Machine Model, Representation of Turing MachinesUnit 2: Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing Machine, Turing Machine as Computer of IntegerUnit 3: Functions, Universal Turing machine, Linear Bounded Automata, Church's Thesis, Recursive and RecursivelyUnit 4: Enumerable language, Halting Problem Post Correspondence Problem, Introduction to Recursive Function Theory.						

- 1. J. E. Hopcraft, R. Motwani, and Ullman, "*Introduction to Automata theory, Languages and Computation*", Pearson Education Asia, 2nd Edition.
- 2. J. Martin, "Introduction to languages and the theory of computation", McGraw Hill, 3rd Edition.
- 3. C. Papadimitriou and C. L. Lewis, "Elements and Theory of Computation", PHI.
- 4. K. L. P. Mishra and N. Chandrasekaran, "Theory of Computer Science Automata Languages and Computation" PHI.
- 5. Y. N. Singh, "Mathematical Foundation of Computer Science", New Age International.

			nester II, Paper-II (04					
Core Course: MCA-2002 OBJECT ORIENTED PROGRAMMING								
Credit: 4		CIA: 25	ESE: 75	Max	x. Marks: 100			
objects rathe	er than actions or tes code reusabili software systems	logic. Objects e ity, modularity, . Common OOP	and flexibility, facilitat languages include Jav	haviour, communica ing easier maintenan a, Python, and C++.	ating through methods. nce and development			
Block I	Encapsulation, I Unit 2: The Jav Unit 3: Fundam Unit 4: Definin members, Com	nheritance, Poly a Environment, lental Programr g classes in Jav ments, Data Tyj	mming: objects, class morphism, OOP in Jav Java Source File Stru ning Structures in Jav a, constructors, metho pes, Variables, Operat	va, Characteristics of acture, and Compila a ods, access specifies fors, Control Flow,	ation. s, static Arrays.			
Block II	 Unit 1: Inheritance, Interfaces, and Packages: Inheritance: Super classes, subclasses, Protected members, constructors in subclasses, Object class, abstract classes, and methods. Unit 2: Interfaces: defining an interface implementing interface, differences between classes and interfaces and extending interfaces, Object cloning, inner classes. Packages: Defining Package, CLASSPATH Setting for Packages, Unit 3: Making JAR Files for Library Packages, Import and Static Import Naming 							
Block III	Convention for Packages, Networking java.net package. Unit 1: Exception Handling, I/O: Exceptions: exception hierarchy, throwing and catching exceptions, built. Unit 2: in exceptions, creating own exceptions, Stack Trace Elements. Input Unit 3: Output Basics: Byte streams and Character streams, Reading and Writing, Console Reading, and Writing Files.							
Block IV	Unit 1: Multith multithreading Unit 2: and mul- Interthread, read Unit 3: Generic Unit4:Bounded	reading and G titasking, thread communication Programming: Types:Restricti	eneric Programmin lifecycle, creating thre n, daemon threads, thu Generic classes, gene onsandLimitations.	eads, synchronizing read groups. pric methods,				
Block V	Components, w event handling: Unit 2: handlers event hierarchy	orkingwith2Ds event s, adapter classe Introduction to nents: Text Fiel choices, Scrollb		nts, and images. Bas ents, AWT even the gement, Swing	ir AWT			

- Herbert Schildt, "*Java The complete reference*", McGraw-Hill Education, 8th Edition, 2011
 Cay S. Horstmann, Gary Cornell, "*Core Java Volume-I Fundamentals*", Prentice Hall, 9th Edition, 2013.
- 3. Steven Holzner, "Java Black Book", Dreamtech.
- Balagurusamy E, "*Programming in Java*", McGraw-Hill
 Naughton, Schildt, "*The Complete Reference Java 2*", McGraw Hill
- 6. Khalid Mughal, "A Programmer's Guide to Java SE8" Oracle Certified Associate (OCA), Addison-Wesley.

			nester II, Paper CA-2003 OPE				
Credit: 4		CIA: 25	ESE		Max. Marks: 1	00	
An operating software app communicati	lications. It cor on between has secure utilizati Unit 1: Opera Unit 2: Opera Batch, Intera Unit 3: Multi	ntrols memory, s rdware compone on of computer ating System St ating system functive, Time-sha user Systems, I	cheduling tasks, ents. Examples ir resources, enabli ructure-Layerec nctions, Classifi ring, Real-Time Multi-process Sy	handling in iclude Win ng user int structure, cation of C System, I ystems, Mu	esources, providing service nput/output operations, and dows, macOS, and Linux. eraction and application ex System Components, Operating systems- Multiprocessor Systems, ultithreaded Systems,	s to l facilitating OS ensures	
	Unit 4: Opera Microkernel		rvices, Reentrar	it Kernels,	Monolithic and		
Block II	Producer/Con Unit 2: Mutu Peterson's so Unit 3: Test a Philosopher I	Unit 1: Concurrent Processes: Process Concept, Principle of Concurrency, Producer/Consumer ProblemUnit 2: Mutual Exclusion, Critical Section Problem, Dekker's solution, Peterson's solution, Semaphores, Unit 3: Test and Set operation, Classical Problem in Concurrency-Dining Philosopher Problem, Sleeping Barber Problem, Unit 4: Inter Process Communication models and Schemes Process					
Block III	Unit 1: Scheo Transition Di Unit 2: Proce identification Unit 3: Threa Multiprocess Unit 4: Dead	agram, Schedu ess Control Bloc information, ads and their ma or Scheduling. lock: System m	lers, ck (PCB), Proce magement, Sche	ss address eduling Al	-		
Block IV	Unit 1: Basic partitions Unit 2: Multi Paging, Unit 3: Pageo Performance	bare machine, programming v l segmentation, of demand pag	Resident monito vith variable par Virtual memor ing, Page replac	or, Multipi titions, Pr y concepts ement alg	orogramming with fixed otection schemes, , Demand paging, orithms, ity of reference.		
Block V	Unit 1: /O M I/O buffering Unit 2: File S Unit 3: File d	anagement and , Disk storage a System: File con	Disk Schedulin nd disk schedulin ncept, File organ Tile sharing, File	g: I/O deving, RAID	ices, and I/O subsystems,		

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley Publication.
- 2. Sibsankar Halder and Alex A Arvind, "Operating Systems", Pearson Education.
- 3. Harvey M Dietel, "An Introduction to Operating System", Pearson Education.
- 4. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 5. Harris, Schaum's Outline of "Operating Systems", McGraw Hill

	MCA Semester II, Paper-IV (04 Credits)	
Credite 4	Core Course: MCA-2004 DATABASE MANAGEMENT SYSTEMS CIA: 25 ESE: 75 Max. Marks: 10	00
Credit: 4 Database Ma	CIA: 25ESE: 75Max. Marks: 10Inagement Systems (DBMS) organize and store data, allowing users to retrieve, upda	
manage infor Examples ind	rmation efficiently. They provide features for data integrity, security, and concurrency clude MySQL, Oracle, and PostgreSQL. DBMS ensures data consistency, enables da complex queries for data analysis and decision-making.	y control.
Block I	 Unit 1: Overview Database System vs File System Database System Concept and Architecture Data Model Schema and Instances Unit 2: Data Independence and Database Language and Interfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concept Unit 3: Notation for ER Diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Unit 4: Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationship of Higher Degree. 	
Block II	 Unit 1: Relational Data Model Concepts, Integrity Constraints, Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Unit2: Introduction to SQL Characteristics of SQL, Advantage of SQL. SQL Data type and Literal Types of SQL Commands. Unit 3: SQL Operators and their Procedure Tables, Views and Indexes Queries and Subqueries. Unit 4: Aggregate Functions Insert, Update and Delete Operations, Joins, Unions, Intersection, Minus, Cursors, Triggers, Procedures in SQL/PLSQL 	
Block III	 Unit 1: Data Base Design & Normalization: Functional dependencies, normal forms, Unit 2: first, second, third normal forms, BCNF, inclusion dependence, loss less join decompositions, Unit 3: normalization using FD, MVD, and JDs, alternative approaches to database design 	
Block IV	 Unit 1: Transaction Processing Concept: Transaction System, Testing of Serializability, Serializability of Schedules Unit 2: Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Unit 3: Log Based Recovery, Checkpoints, Deadlock Handling. Unit 4: Distributed Database: Distributed Data Storage, Concurrency Control, Directory System 	
Block V	Unit 1: Concurrency Control, Locking Techniques for Concurrency Control Unit 2: Time Stamping Protocols for Concurrency Control, Validation Based Protocol Unit 3: Multiple Granularity, Multi Version Schemes, Recovery with Concurrent Transaction, Case Study of Oracle.	

- 1. Korth, Silbertz, Sudarshan, "Database Concepts", McGraw Hill.
- 2. Date C J, "An Introduction to Database Systems", Addison Wesley.
- 3. Elmasri Navathe, "Fundamentals of Database Systems", Addison Wesley.
- 4. O'Neil, "Databases", Elsevier Pub.
- Ramakrishnan, "Database Management Systems", McGraw Hill.
 Leon & Leon, "Database Management Systems", Vikas Publishing House.
- 7. Bipin C. Desai, "An Introduction to Database Systems", Galgotia Publications.
- 8. Majumdar & Bhattacharya, "Database Management System", McGraw Hill.

	MCA Semester II, Paper-V (04 Credits)	
	e Course: MCA-2005 DATA STRUCTURES & ANALYSIS OF ALGORITHMS	
Credit: 4	CIA: 25 ESE: 75 Max. Marks:	
data. Key co efficiency in	res & Analysis of Algorithms involves studying efficient ways to organize and manipul ncepts include arrays, linked lists, trees, graphs, and hash tables. Algorithm analysis ev terms of time and space complexity. This field is fundamental in designing and optimizations for various computational problems.	aluates
	Unit 1: Introduction to data structure: Data, Entity, Information, Difference	
Block I	between Data and Information, Datatype, Building datatype, Abstract datatype, Definition of data structures, Types of Data Structures: Linear and Non-Linear Data Structure, Unit 2: Introduction to Algorithms: Definition of Algorithms, Difference between algorithm and programs, properties of algorithm, Algorithm Design Techniques, Performance Analysis of Algorithms, Complexity of various code structures, Order of Growth, Asymptotic Notations. Unit 3: Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D, 2-D Array Application of arrays, Sparse Matrices and their representations. Unit 4: Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List, Insertion, Deletion, Traversal, Polynomial Representation and Addition Subtraction & Multiplications of Single variable.	
Block II	 Unit 1: Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Fibonacci numbers, and Hanoi towers. Unit 2: Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array, and linked implementation of queues in C, DE queue, and Priority Queue. Unit 3: Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search. Concept of Hashing & Collision resolution Techniques used in Hashing. 	
Block III	Unit 1: Sorting: Insertion Sort, Selection Sort, Bubble Sort, Heap Sort, Comparison of Sorting Algorithms, Sorting in Linear Time: Counting Sort and Bucket Sort.Unit 2: Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacency Matrices, Adjacency List, Adjacency.Unit 3: Graph Traversal: Depth First Search and Breadth First Search, Connected Component.	
Block IV	 Unit 1: Basic terminology used with Tree, Binary Trees, Binary Tree Representation: Array Representation and Pointer (LinkedList) Unit 2: Representation, Binary Search Tree, Complete Binary Tree, An Extended Binary Trees Unit 3: Tree Traversal algorithms: In-order, Preorder and Post-order, Constructing Binary Tree from given Tree Traversal, Unit 4: Operation of Insertion, Deletion, Searching & Modification of data in Binary Search Tree, Threaded Binary trees, Huffman coding using Binary Tree, AVL Tree and B-Tree. Unit 1: Divide and Conquer with Examples Such as Merge Sort, Quick-Sort, 	
Block V	Unit 2: Matrix Multiplication: Strassen's Algorithm Dynamic Programming: Dijkstra Algorithm, Bellman Ford Algorithm Unit 3: All-pair Shortest Path: Warshal's Algorithm, Longest Common Sub- Sequence Greedy Programming: Prims and Kruskal algorithm.	

- 1. Cormen T. H., Leiserson C. E., Rivest R. L., and Stein C., "Introduction to Algorithms", PHI.
- 2. Horowitz Ellis, Sahni Sartaj and Rajasekharan S., "*Fundamentals of Computer Algorithms*", 2nd Edition, Universities Press.
- 3. Dave P.H., H. B. Dave, "Design and Analysis of Algorithms", 2nd Edition, Pearson Education.
- 4. Lipschitz S., "Theory and Problems of Data Structures", Schaum's Series.
- 5. Goyal K. K., Sharma Sandeep & Gupta Atul, "*Data Structures and Analysis of Algorithms*", HP Hamilton.
- 6. Lipschutz, "Data Structures with C", SIE-SOS, McGraw Hill
- 7. Samanta D, "Classic Data Structures", 2nd Edition Prentice Hall India.
- 8. Goodrich M.T. and Tomassia R., "*Algorithm Design: Foundations, Analysis and Internet examples*", John Wiley and sons.
- 9. Sridhar S., "Design and Analysis of Algorithms", Oxford Univ. Press.
- 10. Aho, Ullman and Hopcroft, "Design and Analysis of algorithms", Pearson Education.
- 11. R. Neapolitan and K. Naimipour, "Foundations of Algorithms", 4th Edition, Jones a Bartlett, Student Edition.
- 12. Reema Thareja, "Data Structures using C", Oxford Univ. Press

	MCA Semester III, Paper-I (04 Credits)	
Credit: 4	Core Course: MCA-3001 COMPUTER NETWORK CIA: 25 ESE: 75 Max. Marks: 100	<u>n</u>
This course concepts su	aims to provide students with a comprehensive understanding of computer networks, concerning and the students will gain protocols, security, and troubleshooting. Students will gain protocols, configuring, and managing computer networks to support efficient data communications.	overing practical
Block I	 Unit 1: Introductory Concepts: History, Goals and Applications of Networks, Layered Network Architecture, Review of ISO-OSI Model Unit 2: Introduction to TCP/IP Model, Data Communication Techniques, Pulse Code Modulation (PCM) Unit 3: Multiplexing Techniques, Frequency Division, Time Division, Statistical Time Division Multiplexing. Unit 4: Physical Layer: Transmission Media: Wires, Cables, Radio Links, Satellite Link, Fiber Optic Unit 5: Error Detection and Correction: Single and Burst Error, Parity Check Codes, Cyclic Redundancy Code & Hamming Code 	
Block II	 Unit 1: Data Link Layer Protocols, Stop and Wait Protocols Unit 2: Noise free and Noisy channel, Performance, and efficiency, sliding Window Protocols Unit 3: Go Back and Selective Repeat ARQS, performance and efficiency. 	
Block III	 Unit 1: Medium access sub layer: Channel allocations, LAN protocols, ALOHA Protocols Pure ALOHA, slotted ALOHA Unit 2: Carrier Sense Multiple Access Protocols, CSMA with Collision Detection, Collision free Protocols Unit 3: IEEE Standards, FDDI, Data Link Layer elementary data link protocols, error handling Unit 4: High Level Data Link Control, DQDB. HDLC data link protocols, ISDN, Channel Structure, Asynchronous Transfer Mode ATM 	
Block IV	 Unit 1: Network and Transport Layer Protocols: General Principles, Virtual Circuits, and datagram's, Windows flow control, Packet Discarding, Traffic Shaping, Choke RSVP, Network Layer in ATM Unit 2: Internetworking using Bridge, Router and Gateways, Routing Algorithms: shortest path routing, Quality of Services, Primitives Connection Management: Addressing, Connection Establishment and Releases Unit 3: Flow Control and Buffering, Crash recovery, Element of TCP/IP protocol: User Data gram Protocol, (UDP/TCP) Layering. TCP/IP packet, IP addresses Unit 4: IPv6 Transport Layer: Design issues, connection management, TCP window Management, User Datagram Protocol, Transmission Control Protocol 	
Block V	 Unit 1: Application Layer: Network Security, DES, RSA algorithms, Domain Name System Unit 2: Simple Network Management Protocol, Electronic mail Unit 3: File Transfer Protocol, Hyper Text Transfer Protocol Unit 4: Cryptography and compression Techniques 	

- 1. A. S. Tanenbaum, "Computer Networks", 3rd Edition", PHI
- A. S. Fahleholdun, Computer Networks, S. Eduton, TH
 W. Stallings, "Data and Computer Communication", Macmillan Press
 Comer, "Computer Networks & Internet", PHI.
 Comer, "Internetworking with TCP/IP", PHI
 Forouzan, "Data Communication and Networking", TMH

		ester III, Paper-II (04 Cre					
		3002 ARTIFICIAL INTE					
Credit: 4	CIA: 25	ESE: 75	Max. Marks: 100				
concepts, me and practical	thodologies, and applications. Th	rough a combination of th	ading of Artificial Intelligence (A.I eoretical lectures, hands-on projects I, including machine learning, neura				
Block I	Unit 1: INTRODUCTION: Definitions, Basic Elements of Artificial Intelligence Unit 2: Artificial Intelligence application Areas, Intelligent Agents Unit 3: Structure of Intelligent Agents, natural language, Automated reasoning, visual perception						
Block II	Unit 1: INTRODUCTION TO SEARCH: search knowledge, Problemsolving: Solving problems by searching: state space formulation, depth first and breadth first search.Unit 2: Iterative deepening production systems, search space control; depth- first, breadth-first searchUnit 3: Heuristic Based Search: Heuristic search, Hill climbing, best-first search.Unit 4: branch and bound, Problem Reduction, Constraint Satisfaction End and Means-End Analysis						
Block III	Unit 1: KNOWLEDGE REP Propositional logic Unit 2: Theory of first order log Unit 3: Forward & Backward of Unit 4: Probabilistic reasoning	RESENTATION AND F gic, Inference in First orde chaining, Resolution	er logic				
Block IV	Unit 1: NATURAL LANGUA Processing, Semantic Processing Unit 2: Game Playing: Minima systems. Unit3: Bayesian networks. Lea learning decision trees. Unit4: Computational learning Applications: Environmental S etc.	ng, Pragmatic Processing ax, alpha-beta pruning Pro arning from observations: theory, Explanation base	bbabilistic reasoning Inductive learning, d learning.				

- 1. E. Rich and K. Knight, "Artificial Intelligence", Tata McGraw Hill.
- 2. E. Charnaik and D. McDermott, "*Introduction to Artificial Intelligence*", Addison Wesley Publishing Company.
- 3. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", PHI.
- 4. W. F. Clofisin and C. S. Mellish, "Programming in PROLOG", Narosa Publishing Co.
- 5. Sanjiva Nath, "Turbo PROLOG", Galgotia Publications Pvt. Ltd.
- 6. K M Fu, "Neural Networks in Computer Intelligence", McGraw-Hill
- 7. Russel and Norvig, "AI A modern Approach", Pearson Education

	MCA Semester III, Pa		
Credit • 4	Core Course: MCA-3003 SOF		
engineering combination	tims to equip students with the essential know to excel in designing, developing, and mainta of theoretical lectures, practical exercises, ar s of software engineering, including requirent ance. Unit 1: Introduction: Software Crisis, Sof Software life cycle models, Waterfall, Pro Models Unit 2: Overview of Quality Standards lil Requirements analysis & specifications: H elicitation techniques like FAST, QFD & Unit 3: Requirements analysis using DFD Unit 4: Requirements documentation, Na	ining high-quality ad hands-on project nents engineering tware Processes of totype, Evolution (ce ISO9001, SEI- Requirement engine) Use case approa (c), Data dictionari	y software systems. Through a cts, students will delve into the , software design, coding, testing, & Characteristics, nary and Spiral -CMM. Software ineering, requirement ch es & ER Diagrams
Block II	organization of SRS Unit 1: Software Project Planning Size Es Function Count, Cost Estimation Models, Unit 2: COCOMO, COCOMO-II, Putnam Management Unit 3: Software Design: Cohesion & Cou & Coupling Unit 4: Function Oriented Design, Object Design	Static single & l n resource allocat upling, Classifica	Multivariable Models tion model, Risk ttion of Cohesiveness
Block III	Unit 1: Software Metrics: Software measu Halstead Software Science Measures, Des Unit 2: Information Flow Metrics, Softwa test cases, functional testing: Boundary va Decision table testing Unit 3: Cause effect graphing, Structural te mutation testing, Unit Testing Unit 4: Structural testing, Path Testing, Dat Testing, Integration and System Testing, I Regression Testing, Testing Tools & Star	ign Metrics, Data are Testing: Testi alue analysis, Equ esting, Path Testir a flow and mutati Debugging, Alph	a Structure Metrics ng process, Design of uivalence class testing, ng, Data flow and ion testing, Unit
Block IV	Unit 1: Software Reliability: Importance, Reliability, Failure and Faults Unit 2: Reliability Models, Basic Model, time Component Unit 3: Software Maintenance: Managem Process, Maintenance Models Unit 4: Reverse Engineering, Software Re Management, Documentation	Logarithmic Pois	sson Model Calendar ace, Maintenance

- 1. K. K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International, 2001.
- 2. R. S. Pressman, "Software Engineering-A Practitioner's Approach", 5th Ed., McGraw-Hill Int. Ed., 2001.
- 3. R. Fairley, "Software Engineering Concepts", Tata McGraw Hill, 1997.
- 4. P. Jalote, "An Integrated approach to Software Engineering", Narosa, 1991.
- 5. Stephen R. Schach, "Classical & Object-Oriented Software Engineering", IRWIN, 1996.
- 6. James Peter, W. Pedrycz, "Software Engineering", John Wiley & Sons., 1999
- 7. I. Sommerville, "Software Engineering", Addison Wesley, 1999

	MCA Sem	ester III, Paper-IV (04 C	redits)	
	Elective-1 Course: MCA-3004			
Credit: 4				
Mining conc and managir	aims to provide students with epts, techniques, and methodo ng data warehouses to facilitat d unstructured data.	logies. Students will explo	ore the process of designing,	building,
Block I	Unit 1: Introduction: Data V Warehouse, OLTP Systems: Warehouse, Unit 2: Differences between Characteristics of Data Ware Unit 3: Functionality of Dat Introductions Unit 4: Components of Data Applications of Data Wareh	Differences between OL OLTP Systems and Data ehouse a Warehouse, Data Wareh warehouse Architecture ouse.	TP Systems and Data Warehouse, house Architecture: ,Advantages and	
Block II	Unit 1: Planning and Designing: Data Warehouse Planning and Requirements:Planning Data Warehouse and Key IssuesUnit 2: Data Warehouse development Life Cycle, Dimensional Modeling:Data Warehouse Schemas; Star SchemaUnit 3: Inside Dimensional Table, Inside Fact Table, Snowflake Schema			
Block III	Unit 1: Data Warehouse & O OLAP Unit 2:Steps in the OLAP C Unit 3: OLAP Architectures Advantages of OLAP; Meta	reation Process , Types of OLAP: MOL		
Block IV	Unit 1: Scope of Data Minir Unit 2: Architecture for Dat		pols	
Block V	Unit 1: Data Mining Versus Unit 2: Data Mining Techni Unit 3: Classification, Regre	ques:- Association rules	ystem	

- Alex Berson, Stephen J. Smith, "Data Warehousing, Data mining & OLAP", TMH
 Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Implementation", Pearson
 I. Singh, "Data Mining and Warehousing", Khanna Publishing House

	MCA Semester III, Paper-IV (04 Credits) Elective-1 Course: MCA-3005 CLOUD COMPUTING					
Credit: 4	Elective-1 Course: MCA-	3005 CLOUD CO ESE: 75	MPUTING Max. Marks: 100			
	uting refers to the delivery of computing			software		
over the inte	ernet. It allows users to access data and re and providing scalability, flexibility, a	l applications remo	otely, reducing the need for	physical		
Block I	Unit 1: Cloud Computing Overview Or components Unit 2: Essential characteristics – On-or Location independent resource pooling Unit 3: Comparing cloud providers with cloud computing.	lemand self-service ,Rapid elasticity , 1	e, Broad network access, Measured service.			
Block II	Unit 1: Cloud Insights Architectural influences – High-performance computing, Utility and Enterprise grid computing.Unit 2: Cloud scenarios – Benefits: scalability ,simplicity ,vendors ,security, Limitations – Sensitive informationUnit 3: Application development- security level of third party - security benefits, Regularity issues: Government policies.					
Block III	Unit 1: Cloud Architecture - Layers an Software as a Service (SaaS) Unit 2: Features of SaaS and benefits, PaaS and benefits, Infrastructure as a S Unit 3: Service providers, challenges, a deployment model: Public clouds – Pri Unit 4: Hybrid clouds - Advantages of	Platform as a Servier ervice (IaaS), featur and risks in cloud a vate clouds – Com	ce (PaaS), features of ures of IaaS and benefits doption. Cloud			
Block IV	Unit 1: Cloud Security- Security Patter Unit 2: Geo-tagging, Cloud VM Platfo Unit 3: Trusted Cloud Resource Pools Access Control Unit4: Cloud Data Breach Protection, I	rm Encryption ,Secure Cloud Inter	rfaces, Cloud Resource			
Block V	Unit 1: Application Development: Service based applications. Unit 2: Development environments for Unit 3: Amazon, Azure, Google App, S Reduce, Yahoo Hadoop.	· service developme	ent.			

- 1. Anthony T. Velte, Toby J. Velte Robert Elsenpeter, "*Cloud computing a practical approach*", TATA McGraw-Hill, New Delhi, 2010
- 2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online" Que 2008
- 3. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, "*Cloud Computing for Dummies*", Wiley Publishing, Inc,2010
- 4. Rajkumar Buyya, "*Cloud Computing (Principles and Paradigms)*", James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011

	MCA Sen	nester III, Paper-V (04	Credits)			
	Elective-2	Course: MCA-3006 BI				
Credit: 4						
essential for fundamenta learning abo	r managing and deriving insigh l characteristics of Big Data, in	ts from large and comple cluding volume, velocity L databases and distribu	ples, technologies, and applications ex datasets. Students delve into the y, variety, veracity, and value, while ted file systems such as Hadoop, as we			
Block I	Unit 1: Introduction to Big D Evolution of Big Data, Defini Unit 2: 5Vs of Big Data, Bus Unit 3: Big Data Analytics: O in Big Data.	tion of Big Data, Challer iness Intelligence vs. Big	nges with Big Data			
Block II	Unit 1: Introduction to Hadoop: Features, Advantages, Versions, Overview of Hadoop Eco systems Unit 2: Hadoop distributions, Hadoop vs. SQL, RDBMS vs. Hadoop, Hadoop Components					
Block III	Unit 1: Hadoop Distributed F Command Line Interface Unit 2: Hadoop file system in and Hadoop archives. Unit 3: Hadoop I/O: Compress structures.	terfaces, Data flow, Data	a Ingest with Flume and Scoop			
Block IV	Unit 1: MapReduce: MapRed Reducer, Combiner. Unit 2: Partitioner, Searching		Map Reduce Features, Mapper,			
Block V	Comparison of Pig with Data Unit 2: Hive: Hive Shell, Hive Databases	bases e Services, Hive Meta sto	PIG, Execution Modes of Pig, ore, Comparison with Traditional Defined Functions. Big SQL :			

- 1. Seema Acharya, Subhashini Chellappan, "Big Data and Analytics", Wiley Publication, 2015
- 2. Tom White, "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012.
- 3. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP, 2012.
- 4. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley& sons, 2012.
- 5. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007

			ter III, Paper-V (04 Cr		
Credit: 4		Z Course: MCA CIA: 25	3007 DIGITAL IMAG ESE: 75	Max. Marks: 100	
This course techniques, students wil	aims to provide s and applications.	tudents with a sol Through theoretic ental concepts suc	id foundation in Digital cal lectures, practical de	Image Processing (DIP) princ emonstrations, and hands-on ex on, enhancement, restoration,	
Block I	and Quantization characterization Unit 2: Element Unit 3: Image S	on - Imaging geon n. ts of visual perce Sampling and Qu	metry, discrete image	nd Acquisition	
Block II	Unit1: Two-dimensional Fourier Transform-Properties–Fast Fourier Transform Unit 2: Inverse FFT, Discrete cosine transform and KL transform. Unit 3: Discrete Short time Fourier Transform, Wavelet Transform-Discrete wavelet Transform-and its application in Compression				
Block III	Basic Gray leve Unit 2: Smooth Smoothing free	el Transformation ing spatial filters juency domain fil	ns – Histogram Proces - Sharpening spatial fi	lters. Frequency Domain:	
Block IV	Unit 2: Uncons		rview of Degradation trained restorations-In r Filter		
Block V	Boundary detect Unit 2: Thresho matching. Unit 3: Advanc segmentation	ction. olding-Edge based ed optimal border	ection of discontinuitie l segmentation, Region r and surface detection undary Descriptors-Re	based Segmentation, -Use of motion in	
Block VI	projection oper	ator.	om Projections: Need- erse Radon Transform	Radon Transform-Back	

Rafael C. Gonzalez & Richard E. Woods, "*Digital Image Processing*", Pearson Education, 2/e, 2004.
 Anil. K. Jain, "*Fundamentals of Digital Image Processing*", Pearson Education, 2003.

	MCA Semester IV, Paper-I (04 Credits)					
Elective-3 Course: MCA-4001 SOFT COMPUTING						
Credit: 4	CIA: 25	ESE: 75	Max. Marks: 100			
as neural r applications real-world computing	networks, fuzzy logic, and g s, students will learn to analyze problems efficiently. By the	enetic algorithms. Thro , design, and implement s end of the course, stud	anding of soft computing technique ugh theoretical concepts and p soft computing models to tackle c ents will be proficient in utiliz lata analysis, optimization, and d	oractical complex ing soft		
Block I	Unit 1: Neural Networks: Hi Mathematical Models of Neu Unit 2: ANN architecture, le Unsupervised and reinforcem Unit 3: ANN training Algori Propagation Algorithm Unit 4: Multilayer Perceptron Applications of Artificial Neu	arning rules, Learning Pa arning rules, Learning Pa ant Learning. thms-perceptions, Trainin n Model, Hopfield Netwo	radigms-Supervised, ng rules, Delta, Back			
Block II	Unit 1: Fuzzy Logic: Introdu Overview of Classical Sets, Unit 2: Membership Functio Compliment, Intersections, U Unit 3: Unions, Combination Unit 4: Fuzzy Arithmetic: Fu Operations on Intervals & Nu	n, Fuzzy rule generation. Inions, ns of Operations, Aggrega uzzy Numbers, Linguistic	Operations on Fuzzy Sets: ation Operations variables, Arithmetic			
Block III	 Unit 1: Fuzzy Logic: Classic Fuzzy Qualifiers. Unit 2: Linguistic Hedges. U Uncertainty. Unit 3: Non specificity of Fu Unit 4: Introduction of Neuro Networks. Application of Fuzzon 	Incertainty based Informa Izzy & Crisp Sets, Fuzzin o-Fuzzy Systems: Archite	ution: Information & ness of Fuzzy Sets. ecture of Neuro Fuzzy			
Block IV	Unit 1: Genetic Algorithm: A of GA	An Overview, GA in prob	elem solving, Implementation			

- 1. Anderson J. A., "An Introduction to Neural Networks", PHI, 1999.
- 2. Hertz J. Krogh, R.G. Palmer, "*Introduction to the Theory of Neural Computation*", Addison-Wesley, California, 1991.
- 3. G. J. Klir & B. Yuan, "Fuzzy Sets & Fuzzy Logic", PHI, 1995.
- 4. Melanie Mitchell, "An Introduction to Genetic Algorithm", PHI, 1998.
- 5. "Neural Networks A Comprehensive Foundations", Prentice-Hall International, New Jersey, 1999.
- 6. Freeman J. A. & D. M. Skapura, "Neural Networks: Algorithms, Applications and Programming Techniques", Addison Wesley, Reading, Mass, (1992).

	MCA Semester IV, Paper-I (04 Credits)					
	Elective-3 Course: MCA-4002 SOF	TWARE QUALIT	Y ENGINEERING			
Credit: 4	CIA: 25	ESE: 75	Max. Marks: 100			
methodolog standards, 1	The purpose of Software Quality Engineering for MCA students is to equip them with industry-standard methodologies, tools, and ethical principles for ensuring software quality. Through understanding quality standards, risk management, and process improvement, students are prepared to contribute effectively to high-quality software development projects in their future careers.					
Block I	Unit 1: Introduction Defining Softwar Specification, Cost of Quality, Defects Unit 2: Failures, Defect Rate and Reli Containment, Unit 3: Overview of Different Types of Measurement and Inspection Process,	s, Faults ability, Defect Preve of Software Review,	ntion, Reduction, and Introduction to			
Block II	Unit 1: Software Quality Metrics Proc Customer Problems Metric Unit 2: Customer Satisfaction Metrics Metrics: Defect Arrival Pattern, Unit 3: Phase-Based Defect Removal Metrics for Software Maintenance: Ba Unit 4: Fix Response Time, Fix Quality	, Function Points, In Pattern, Defect Remo cklog Management I	-Process Quality oval Effectiveness, index,			
Block III	Unit 1: Software Quality Managemen Unit 2: Software Reliability Models: Distribution and Software Reliability O Unit 3: Software Reliability Allocatio Unit 4: Software Quality Assessment Quality Assessment	The Rayleigh Model, Growth Models n Models, Criteria fo	Exponential or Model Evaluation,			
Block IV	Unit 1: Software Quality Assurance Q Improvement Process Unit 2: Evolution of Software Quality Major SQA Issues Unit 3: Zero Defect Software, SQA Te Unit 4: Total Quality Management, Q	Assurance (SQA), M	Major SQA Activities, Quality Assurance			
Block V	Unit 1: Software Verification, Validat Evolutionary Nature of Verification ar Unit 2: Impracticality of Testing all D Testing, Functional, Structural and Err Unit 3: Static and Dynamic Testing To Tools.	nd Validation, ata and Paths, Proof or-Oriented Analysis	of Correctness, Software s & Testing			

- Jeff Tian, "Software Quality Engineering (SQE)", Wiley-Inderscience, 2005; ISBN 0-471-71345-7.
 Stephen H. Kan, "Metrics and Models in Software Quality Engineering", Addison Wesley (2002), ISBN: 0201729156

	MCA Semester IV	, Paper-II (04 Credits)		
Elective-4 Course: MCA-4003 NEURAL NETWORKS				
Credit: 4	CIA: 25	ESE: 75	Max. Marks: 100	
the principl models for	ve of neural networks from MCA (Mast es and architectures of artificial neural various tasks such as classification, regre arning and artificial intelligence.	networks, enabling them t	o design, train, and deploy	
Block I	 Unit 1: Fundamentals of ANN: Biological neurons, Feedforward Networks, Feedback Networks, Neural processing Unit 2: Supervised and unsupervised learning, Neural Network Learning Rules Hebbian Learning Rule Unit 3: Perceptron Learning Rule, Delta Learning Rule, Widrow-Hoff Learning Rule Unit 4: Correlation Learning Rule, Winner-Take-All Learning Rule, Outstare Learning Rule 			
Block II	Unit 1: Classification Model, Features, Discriminant FunctionsUnit 2: Linear Machine and Minimum Distance Classification, NonparametricTraining ConceptUnit 3: Single-Layer Continuous Perceptron Networks for Linearly SeparableClassifications			
Block III	Unit 1: Linearly Non separable Pattern Classification, Delta Learning Rule for Multi-perceptron Layer, Generalized Delta Learning Rule, Feedforward Recall and Error Back- Propagation Training Unit 2: Feedforward Recall, Error Back-Propagation Training, Multilayer Feedforward Networks as Universal Approximators.Unit 3: Learning Factors Initial Weights, Cumulative Weight Adjustment versus, Incremental Updating, Steepness of the Activation Function, Learning Constant, Momentum Method, Unit 4: Network Architectures Versus Data Representation, Necessary Number of Hidden Neurons Unit 5: Classifying and Expert Layered Networks- Character Recognition Application, Expert Systems Applications			
Block IV	 Unit 1: Single-Layer Feedback Networks: Basic Concepts of Dynamical Systems, Mathematical Foundations of Discrete-Time, Hopfield Networks, Unit 2: Mathematical Foundations of Gradient-Type Hopfield Networks Unit 3: Transient Response of Continuous-Time Networks, Relaxation Modelling in Single-Layer Feedback Networks, Unit 4: Example Solutions of Optimization Problems, Minimization of the Travelling Salesman Tour Length. 			

- 1. Jacek M. Zurada, "Introduction to Artificial Neural Systems", ISBN 0-3 14-93391-3, West Publishing Company.
- 2. Simon Haykin, "*Neural Networks A Comprehensive Foundation*", 2nd Edition, ISBN 81-7808-300-0, Pearson Education (Singapore) Pte. Ltd.
- 3. G'erard Dreyfus, "*Neural Networks: Methodology and Applications*", ISBN-10 3-540-22980-9, Springer Verlag.
- 4. Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka, "*Elements of Artificial Neural Networks*", ISBN 0- 262-13328-8

MCA Semester IV, Paper-II (04 Credits)				
	Elective-4 Course: MC			
Credit: 4	CIA: 25	ESE: 75	Max. Marks: 100	
ecosystem. S interconnect	aims to provide students with a comp Students will learn about IoT archite ion of physical devices. Practical ski nplementing, and managing IoT system	ctures, protocols, and t lls will be developed t	echnologies enabling the	
Block I	Unit 1: Internet of Things (IoT): V Unit 2: Architectural view, technol Unit 3: M2M Communication, IoT Devices: IoT/M2M systems layers Unit 4:communication technologie designing and affordability	ogy behind IoT, Sourc Examples. Design Prir and design standardiza	ces of the IoT, nciples for Connected attion.	
Block II	Unit 1: Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID)technologyUnit 2: Wireless sensor networks, participatory sensing technology.Unit 3: Embedded Platforms for IoT: Embedded computing basics, Overview of IoT supported Hardware platforms such as Arduino.Unit 4: Net Arduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.			
Block III	Unit 1: Network & Communication Unit 2: MAC protocol survey, Sur Unit 3: Sensor deployment & Node	vey routing protocols,		
Block IV	Unit 1: Programming the Arduino: IDE Unit 2: Coding using emulator, usi the Arduino for IoT.	ng libraries, additions	in Arduino, programming	
Block V	Unit 1: Challenges in IoT Design C Challenges, Other challenges IoT A Automation, Unit 2: Automotive Applications, I Unit 3: Communicating data with I streetlights in smart city.	Applications: Smart Me	etering, E-health, City rtcards	

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things key applications and protocols", willey
- 2. Jeeva Jose, "Internet of Things", Khanna Publishing House
- Michael Miller, "*The Internet of Things*" Pearson
 Raj Kamal, "*INTERNET OF THINGS*", McGraw-Hill,1st Edition, 2016
- 5. Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A hands on approach)", 1st edition, VPI publications, 2014

MCA Semester IV, Paper-III (04 Credits)					
	Elective-5 Course: MCA-4005 MACHINE LEARNING				
Credit: 4		CIA: 25	ESE: 75	Max. Marks: 100	
techniques. S methods, inc	Students will le luding regressi	arn to understand, in on, classification, c	mplement, and evaluate s lustering, and dimensiona	learning concepts, algorithm supervised and unsupervised ality reduction. Practical skill ng libraries and frameworks.	learning
Block I	Unit 1: INTRODUCTION TO MACHINE LEARNING: Introduction, Examples of various Learning ParadigmsUnit 2: Perspectives and Issues, Version Spaces, Finite and Infinite Hypothesis SpacesUnit 3: PAC Learning, VC Dimension.				
Block II	Unit 1: SUPERVISED LEARNING ALGORITHMS: Learning a Class from Examples, Linear, Non-linear, Multi-class and multi-label classification.Unit 2: Decision Trees:ID3, Classification and Regression Trees (CART) Unit 3: Regression: Linear Regression, Multiple Linear Regression, Logistic Regression.				
Block III	Unit 1: ENSEMBLELEARNING: Ensemble Learning Model Combination Schemes Unit 2: Voting, Error-Correcting Output Codes Unit 3: Bagging: Random Forest Trees, Boosting: Adaboost, Stacking				
Block IV	Unit 1: UNSUPERVISED LEARNING: Introduction to clustering, Hierarchical:AGNES, DIANAUnit 2: Partitional: K-means clustering, K-Mode Clustering, Self-Organizing Map,Expectation Maximization, Gaussian Mixture ModelsUnit 3: Principal Component Analysis (PCA), Locally Linear Embedding (LLE),Factor Analysis				

- 1. Pradhan M., Kumar U. D., "Machine Learning Using Python", Wiley, 2019
- 2. Anuradha Srinivasaraghavan, Vincy Joseph, "Machine Learning", Wiley, 2019.
- 3. Saikat Dutt, S. Chandramouli, A. K. Das, "Machine Learning", Pearson, 2019.
- 4. Alex Smola and S.V.N. Vishwanathan, "*Introduction to Machine Learning*", Cambridge University Press, 2008.
- 5. Peter Harrington, "Machine Learning in Action", Manning Publications, 2012.
- 6. M. Mohammed, M. Badruddin Khan, E. Bashier M. Bashier, "Machine Learning Algorithms and Applications", CRC Press, 2017.

	MCA Semester IV, Paper-III (04 Credits)			
Credit: 4	Elective-5 Course: M CIA: 25	CA-4006 QUANTUM C ESE: 75	COMPUTING Max. Marks: 100	
The objectiv fundamenta quantum alg	ve quantum computing for an MC ls of quantum mechanics and quar	A (Master of Computer ap ntum computations, enab- lly intensive problems eff	oplications) student is to grasp the	
Block I	Unit 1: Introduction to Quantum Unit 2: Bloch sphere representa			
Block II	Unit 1: Background Mathematics and Physics: Hilber space,Unit 2: Probabilities and measurements, entanglement, density operators and correlationUnit 3: Basics of quantum mechanicsUnit 4: Measurements in bases other than computational basis.			
Block III	Unit 1: Quantum Circuits: singl Unit 2: Multiple qubit gates Unit 3: Design of quantum circu			
Block IV	Unit 1: Quantum Information and Cryptography: Comparison between classical and quantum information theory Unit 2: Bell states, Quantum teleportation. Unit 3: Quantum Cryptography Unit 4: No cloning theorem			
Block V	Unit 1: Quantum Algorithms: Classical computation on quantum computers.Relationship between quantum and classical complexity classesUnit 2: Deutsch's algorithm, Deutsch's-Jozsa algorithm,Unit 3: Shor factorization, Grover search, Noise, and error correction: Graph statesand codesUnit 4: Quantum error correction, fault-tolerant computation.			

- 1. Nielsen M. A., "Quantum Computation and Quantum Information", Cambridge University Press.2002
- 2. Benenti G., Casati G., and Strini G., "Principles of Quantum Computation, and Information", Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, World Scientific.2004
- 3. Pittenger A. O., "An Introduction to Quantum Computing Algorithms", 2000